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Abstract— Air conditioning system (A/C) of the car imposes an 

additional load on the engine, increasing fuel consumption and 

losses. Therefore, any improvement in its performance has a direct 

impact on vehicle performance and fuel consumption. The 

automotive A/C system is a Multi Input- Multi Output (MIMO) 

plant and There are constraints on its variables So the method of 

Model Predictive Control (MPC) as an effective method. So far the 

MPC method is implemented largely for this system. In this paper 

a predictive control method based on orthonormal functions is 

provided for automotive air conditioning system. System's model 

has been changed with an embedded integrator, inputs and 

outputs changes are highly penalized in cost function and 

Laguerre orthonormal basis functions are added in MPC's 

structure and it will be shown that in the proposed control method 

compared to the conventional MPC method, the automotive air 

conditioning system performance has been improved and because 

of reduced computational load the runtime of simulations 

implementation has been reduced. 

 

Index Terms—Automotive air conditioning system, Model 

Predictive Controller, Orthonormal functions 

 

I. INTRODUCTION 

N air conditioning (A/C) system is often identified as a 

system operated on the Vapor Compression Cycle (VCC). 

As illustrated in Fig. 1, this cycle consists of an evaporator, a 

condenser, a compressor, an expansion valve and a fan. The 

refrigerant enters the compressor as a slightly superheated 

vapor at a low pressure. Afterwards it leaves the compressor 

and enters the condenser as a vapor at an exalted pressure, 

where the refrigerant is condensed as heat is   transitioned to the 

outside environment. The refrigerant then leaves the condenser 

as a high-pressure liquid. The pressure of the liquid decreases 

by going through the expansion valve. Consequently, some of 

the liquid beams into cold vapor. The rest of the liquid, now at 

a low pressure and temperature, is vaporized in the evaporator 

 
Manuscript received December 29, 2016; accepted May 28, 2017 

P. Khavash, Master of science, Department of Electrical Engineering, 
Faculty of Electrical and Computer Engineering, Tarbiat Modares University, 
Tehran, Iran. (e-mail: p.khavash@modares.ac.ir).  

A. Ramezani*, Assistant Professor of Electrical Engineering, Department of 

Electrical Engineering, Faculty of Electrical and Computer Engineering, 
Tarbiat Modares University, Tehran, Iran. (e-mail: ramezani@modares.ac.ir).  

while heat is transferred from the refrigerated space. This vapor 

then re-enters the compressor [1]. 

 

Fig. 1. Schematic diagram of a refrigeration cycle [1]. 

In cabins or buildings among all energy consuming factors, 

cooling by the A/C system plays an important role. Normally 

the on/off operation of these systems are implemented to rich to 

the desired environment which consumes significant power. 

Recently, modern air conditioners have begun to consolidate 

variable speed and variable-position actuators to improve 

energy efficiency and cooling performance. Moreover, solar 

air-conditioning systems emerge and begin to be utilized in 

reality. Utilizing solar energy system is a promising mean of 

both reducing consumption of fossil fuels and 𝐶𝑂2 emissions 

into the atmosphere.  Regardless of the kind of A/C system, a 

crucial ingredient to accomplish good performance and 

efficient energy consumption is a proper control strategy [2]. 

Various methods and control approaches are applied on air 

conditioning system yet. For example, in reference number [3], 

a decoupled proportional-integral (PI) control with pre-

compensator is presented. However, according to the studies 

carried on by Lin and Yeh, there are strong cross-couplings 

among inputs and outputs. They have improved feedback 

control algorithms which had been incorporated with a 
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traditional PI controller. The applied feedback controller is 

multi-input and multi-output-based and owns a cascade 

structure for dealing with the fast and slow dynamics in the 

system [4]. In reference number [5], Zhang et al.  

Recommended an application of sliding mode control to an 

automotive A/C system aiming at regulating the superheat 

temperature and cooling capacity. Recently, they have 

demonstrated an energy-optimal control for ancillary load 

reduction of this system [6]. One of the controllers which 

widely uses in industry, is Model Predictive controller (MPC). 

One of the significant aspects of MPC which makes the design 

methodology applicable to both practitioners and academics is 

the ability of the method in handling both ‘soft’ constraints and 

hard constraints in a multivariable control framework. On the 

other hand, MPC can execute on-line process optimization. 

Another advantage of this method is the simplicity of the design 

framework in dealing with all these complex issues [7]. As 

mentioned earlier, the A/C system is a multivariable plant 

which has strong cross-couplings among its inputs and outputs. 

There are different constraints in the system such as input 

saturation limits and state or output constraints.  Therefore, 

model predictive control is noted as a convenient approach to 

control the system due to its features. Razi et al. in reference 

number [8] proposed a neuro-predictive controller for 

temperature control of automotive A/C system. For this 

purpose, an adaptive neural predictive control is proposed in 

[9]. Leducq et al. implemented MPC to control a VCC using a 

first principle non-linear model of this cycle [10]. An MPC 

method has been introduced to control the evaporator superheat 

and condensing pressure in [11]. In [12] a predictive control 

scheme is designed to control a transport refrigeration system 

such as a delivery truck in which a VCC configured in parallel 

to a thermal energy storage unit is included. Wallace et al. used 

the data generated from a first principle model of a VCC to 

identify a linear model, then they designed an offset-free model 

predictive controller based on this model [13]. Recently, in [14] 

another utilization of offset free MPC is implemented for an 

energy efficient operation of the central chiller plant in a case 

study hotel on a tropical island.  

As it is clear, MPC is a widely utilized means of A/C systems 

and chilling plants, but here an advanced MPC is designed to 

develop performance of the automotive A/C system. The model 

of system is changed with an imbedded integrator, inputs and 

outputs changes are highly penalized in cost function and 

Laguerre orthonormal basis functions are added in MPC's 

structure. It will be depicted that the energy saving and cooling 

capacity of automotive A/C system are improved towards 

regular MPC while decreasing computational load and 

simulations runtime. 

II. AUTOMOTIVE A/C SYSTEM MODEL 

Most system oriented models of A/C systems are today based 

on Moving Boundary Method (MBM), which is a parameter – 

limited modeling technique that could be utilized in heat 

exchangers to model dynamics related to fluid’s mass and heat 

transportation regarding their (fluids) phase changes. The A/C 

system models resulted from MBM are generally in the form of 

high order nonlinear differential and algebraic equations [5]. In 

reference number [5], Zhang et al. has proposed an MBM model 

of automotive A/C system that is expressed in a matrix form as: 

𝑍(𝑥)
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢) 

                                                                                          (1) 

𝑦 = 𝑔(𝑥) 
The complete A/C system model is characterized by 15 

states, which result from applying mass and energy balances to 

the condenser and evaporator. This model is more difficult even 

for local controller design.  Hence, they presented a 6-states 

linear model of the system through a model order reduction 

approach and data driven method. Inputs are compressor 

rotation speed in the unit of rpm and expansion valve opening 

percentage, [𝑁𝑐 𝛼]𝑇. The outputs are the superheat 

temperature at the evaporator (SH) and the pressure difference 

between the condenser and evaporator (∆p). Superheating 

refrigerant beyond the evaporation temperature is important 

since not superheating means that the refrigerant enters as in 

two-phase into the compressor and increase the power 

consumption and wear. It is also important to have as much two-

phase refrigerant in the evaporator as possible to increase the 

heat transfer and consequently optimize the refrigeration 

process. Therefore, a crucial variable which significantly 

affects the efficiency of a cooling system is the superheat [15]. 

From another point of view, when a passenger requires lower 

temperature in the section or a solar sensor detects sunshine 

increase, the supervisory temperature controller either increases 

blower fan speed or makes the refrigeration controller lower the 

evaporation pressure in order to increase the amount of heat 

exchange in the evaporator. In these situations, remaining 

unchanged for the superheat can boost heat exchange efficiency 

at the evaporator and can result in saving energy as well [3]. 

In this paper, the specified model is used to adjust superheat 

temperature and cooling capacity of automotive A/C system. 

Working point of the model is characterized by a compressor 

speed of 3000rpm and an expansion valve opening of 23.3%.  

Reciprocal nominal outputs are 5oC superheat and 1090kPa 

pressure difference. 

III. MPC USING LAGUERRE FUNCTIONS 

In this paper, conventional MPC is replaced with 

orthonormal based MPC in order to improve the performance 

of automotive A/C.  

In mentioned method tuning is simpler compared to 

conventional MPC due to more free parameters. Applying 

orthonormal functions reduces number of parameters utilized 

for description of future control trajectory, and computational 

volume decreases as a result. Finally, penalizing input and 

output changes provokes smoother responses in this method. 

 

A. Augmented Model 

Assume that a discrete time model comes as following: 

𝑥𝑚(𝑘 + 1) = 𝐴𝑚𝑥𝑚(𝑘) + 𝐵𝑚𝑢(𝑘)                

                                                                                                           (2) 
𝑦(𝑘) = 𝐶𝑚𝑥𝑚(𝑘) 
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Assume that the plant has p inputs, q outputs and n1 states. We 

need to change the model to be suitable for our design purpose 

in which an integrator is embedded. The augmented model can 

be expressed as follows according to [7]:  

[
∆𝑥𝑚(𝑘 + 1)

𝑦(𝑘 + 1)
]

⏞        
𝑥(𝑘+1)

= [
𝐴𝑚 𝑂𝑚

𝑇

𝐶𝑚𝐴𝑚 𝐼𝑞×𝑞
]

⏞        
𝐴

[
∆𝑥𝑚(𝑘)

𝑦(𝑘)
]

⏞      
𝑥(𝑘)

+ [
𝐵𝑚
𝐶𝑚𝐵𝑚

]
⏞    

𝐵

∆𝑢(𝑘) 

(3) 

𝑦(𝑘) = [𝑂𝑚 𝐼𝑞×𝑞]⏞      
𝐶

[
∆𝑥𝑚(𝑘)

𝑦(𝑘)
] 

 

Where 𝐼𝑞×𝑞 is the identity matrix with dimensions 𝑞 ×  𝑞, 

which is the number of outputs; and 𝑂𝑚 is a 𝑞 ×  𝑛1 zero 

matrix. In (3), 𝐴𝑚, 𝐵𝑚 and 𝐶𝑚 have dimension 𝑛1 ×  𝑛1, 𝑛1 ×
 𝑚 and 𝑞 ×  𝑛1, respectively. Where 𝛥𝑢(𝑘)  =  𝑢(𝑘)  −
 𝑢(𝑘 −  1) and ∆𝑥𝑚(𝑘) = 𝑥𝑚 (k) − 𝑥𝑚 (k − 1) denote the 

difference of the control input and the state variable 

respectively. 

B. Introducing the Laguerre Functions 

The z-transfer function of Leaguers function is given as [7] 

𝛤𝑘(𝑧) = 𝛤𝑘−1(𝑧)
𝑧−1−𝑎

1−𝑎𝑧−1
                                                                 (4) 

 

With 𝛤1(𝑧) =
√1−𝑎2

1−𝑎𝑧−1
 where 0 ≤ a < 1 is called the scaling factor 

and is picked by the user. Letting 𝑙1(𝑘) to 𝑙𝑁(𝑘) denote the 

inverse z-transforms of 𝛤1(𝑧) to 𝛤N(𝑧). This set of discrete-time 

Laguerre functions are expressed in a vector form as: 

𝐿𝑘 = [𝑙1(𝑘) 𝑙2(𝑘) … 𝑙𝑁(𝑘)]
𝑇                                             (5) 

Regarding (4), the set of discrete-time Laguerre functions in 

vector (5) fits in the following equation: 

𝐿(𝑘 + 1) = 𝐴𝑙𝐿(𝑘)                                                                        (6) 

 In which matrix 𝐴𝑙 is (𝑁 × 𝑁) and is a function of parameters 

𝑎 and β = (1−𝑎2), and the initial condition is represented by 

𝐿(0)𝑇 = √β[1 −𝑎 … (−1)𝑁−1𝑎𝑁−1]                      (7) 

C. Use of Laguerre Functions in MPC Design 

In MIMO predictive control system setting, each input signal 

is dedicated to have a Laguerre pole location independently. Let 

∆𝑢 = [∆𝑢1(𝑘) ∆𝑢2(𝑘) … ∆𝑢𝑝(𝑘)]𝑇                                 (8) 

and the input matrix be partitioned to 

B =  𝐵1 𝐵2 . . . 𝐵𝑝                                                                            (9) 

We declare the 𝑖th control signal 𝛥𝑢𝑖(k) by choosing a scaling 

factor 𝑎𝑖 and order 𝑁𝑖, where 𝑎𝑖 and 𝑁𝑖 are picked for this 

particular input, such that 

∆𝑢𝑖(𝑘) = ∑ 𝑐𝑗
𝑖(𝑘)𝑙𝑗

𝑖(𝑘)
𝑁𝑖
𝑗=1                                                          (10) 

By considering 𝜂𝑖 = [𝑐1
𝑖 𝑐2

𝑖 … 𝑐𝑁𝑖
𝑖 ] and 𝐿𝑖(𝑘)

𝑇 =

[𝑙1
𝑖 (𝑘), 𝑙2

𝑖 (𝑘), … , 𝑙𝑁𝑖
𝑖 (𝑘)], 

∆𝑢𝑖(𝑘) = 𝐿𝑖(𝑘)
𝑇𝜂𝑖                                                                       (11) 

where 𝜂𝑖 and 𝐿𝑖(k) are the Laguerre network description of the 

𝑖th control. 

The state prediction has the following form: 

𝑥(𝑘𝑖 +𝑚|𝑘𝑖)
= 𝐴𝑚𝑥(𝑘𝑖)

+  ∑ 𝐴𝑚−𝑗−1[𝐵1𝐿1(𝑗)
𝑇 𝐵2𝐿2(𝑗)

𝑇 … 𝐵𝑚𝐿𝑚(𝑗)
𝑇]       (12)

𝑚−1

𝑗=0

= 𝐴𝑚𝑥(𝑘𝑖) +𝜙(𝑚)
𝑇𝜂 

Where the parameter vector 𝜂 and the data matrix 𝜑(𝑚) 𝑇 

include individual coefficient vectors given by  

𝜂 = [𝜂1
𝑇 𝜂2

𝑇 … 𝜂𝑝
𝑇]                                                     (13) 

 𝜙(𝑚)𝑇 =
 ∑ 𝐴𝑚−𝑗−1[𝐵1𝐿1(𝑗)

𝑇 𝐵2𝐿2(𝑗)
𝑇 … 𝐵𝑚𝐿𝑚(𝑗)

𝑇]𝑚−1
𝑗=0       (14) 

The cost function could be mentioned in the following quadratic 

form 

𝐽 = ∑ (𝑥(𝑘𝑖 +𝑚|𝑘𝑖))
𝑇 × 𝑅𝑦 ×

𝑁𝑝
𝑚=1 (𝑥(𝑘𝑖 +𝑚|𝑘𝑖)) +

∑ (∆𝑈(𝑘𝑖 +𝑚|𝑘𝑖))
𝑇 × 𝑅𝑢 ×

𝑁𝑝−1

𝑚=0 (∆𝑈(𝑘𝑖 +𝑚|𝑘𝑖))            (15) 

The weighting matrices are 𝑅𝑦 >0 and 𝑅𝑢> 0. By substituting 

(11) into the cost function (15) we obtain 

𝐽 = 𝜂𝑇𝛺𝜂 + 2𝜂𝑇𝜓𝑥(𝑘𝑖) + ∑ 𝑥(𝑘𝑖)
𝑇(𝐴𝑇)𝑚𝑅𝑦𝐴

𝑚𝑥(𝑘𝑖
𝑘𝑝
𝑚=1 )  (16)                            

 

where the matrices 𝛺 and 𝛹 are 

𝛺 = (∑ 𝜙(𝑚)𝑄𝜙(𝑚)𝑇 + 𝑅𝐿

𝑁𝑝

𝑚=1

 

(17) 

𝜓 = (∑ 𝜙(𝑚)𝑄𝐴𝑚

𝑁𝑝

𝑚=1

) 

 Consequent to achieving the optimal parameter vector 𝜂 in 

existence of inputs and states constraints, the receding horizon 

control law would be realized as 

∆𝑢(𝑘𝑖) =

[
 
 
 
𝐿1(0)

𝑇 02
𝑇 … 0𝑚

𝑇

01
𝑇 𝐿2(0)

𝑇 … 0𝑚
𝑇

⋮ ⋮ ⋱ ⋮
01
𝑇 02

𝑇 … 𝐿𝑚(0)
𝑇]
 
 
 

𝜂                       (18) 

Where 0𝑘
𝑇, 𝑘 =  1, 2, . . . 𝑚  demonstrates a zero block row 

vector with identical dimension to 𝐿𝑘(0)
𝑇. 

D. Laguerre MPC in Presence of Constraints  

Suppose that the limits on the control signals are 𝑢𝑚𝑖𝑛and 

𝑢𝑚𝑎𝑥. Noting that the increment of the control signal is 𝑢(𝑘) = 

∑ 𝛥𝑢(𝑖)𝑘−1
𝑖=0 , then the inequality constraint for the future time 

k, 𝑘 =  1, 2, . .. , is expressed as : 

 

𝑢𝑚𝑖𝑛 ≤
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[
 
 
 
∑ 𝐿1(𝑖)

𝑇𝑘−1
𝑖=0 02

𝑇 … 0𝑚
𝑇

01
𝑇 ∑ 𝐿2(𝑖)

𝑇𝑘−1
𝑖=0 … 0𝑚

𝑇

⋮ ⋮ ⋱ ⋮
01
𝑇 02

𝑇 … ∑ 𝐿𝑚(𝑖)
𝑇𝑘−1

𝑖=0 ]
 
 
 

𝜂 + 𝑢(𝑘𝑖 −

1) ≤ 𝑢𝑚𝑎𝑥                                                                            (19) 

IV. SIMULATION 

In this paper, the used control strategies are discrete time 

methods. The model of automotive A/C system that is 

introduced in reference number [5] is a continuous time model. 

Since this model will be the basis of controller design of present 

paper, it must be discrete with proper sample time. The largest 

aigen value of the model is 509.33 so the smallest time constant 

is Ts = (1 509.33)⁄  second. 20 percent of Ts is considered as 

discretization time. 

In present paper, three cases have been simulated. First and 

second cases are implementation of regular MPC method, and 

third case is the result of Laguerre MPC simulation. In the 

regular MPC, there are parameters such as 𝑁𝑝 and 𝑁𝑐 which the 

designer can bring the system to appropriate behavior. So, tow 

simulations have been done with the different prediction and 

control horizons; [𝑁𝑝=170, 𝑁𝑐=10] and [𝑁𝑝=200, 𝑁𝑐=30] in 

case 1 and case2, respectively. 

As mentioned before, tuning is simple in MPC based on 

orthonormal basis functions, because of more free parameters 

such as: the poles of Laguerre network, = [𝑎1 𝑎2] , and the 

number of terms making the Laguerre network, 𝑁 = [𝑁1 𝑁2]. 
A scaling factor 𝑎𝑖 and order 𝑁𝑖 are selected for ith input. The 

designer must choose proper 𝑁𝑖 for each 𝑎𝑖 such that system 

represents desired treatment. In third simulation (case 3), 

Laguerre MPC method is implemented with 𝑁 = [20 20] and 

𝑎 = [0.4 0.4]. By the way, prediction and control horizones 

are same with the values of Np and Nc in case 1. The tracking 

of setpoints by the outputs, and control efforts of the 

manipulated variables are illustrated in Fig. 2 and Fig. 3, 

respectively. 

In the whole simulations, constraints applied on manipulated 

variables (𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥), the inputs and outputs weight matrices 

(Ru, Ry) are set with the same values which are given in 

TABLE . By the way, the results of both methods have been 

done by a laptop with 4GB and core i5 processor, and runtime 

for each of simulations are reported in TABLE . 

 
TABLE I 

 THE VALUES OF CONSTRAINTS AND WEIGHT MATRICES 

[
𝟐𝟎𝟎𝟎
𝟏𝟎

] 𝒖𝒎𝒊𝒏 

[
𝟒𝟎𝟎𝟎
𝟒𝟎

] 𝑢𝑚𝑎𝑥 

[
𝟎. 𝟎𝟎𝟎𝟏 𝟎
𝟎 𝟎. 𝟎𝟎𝟎𝟏

] 𝑅𝑢 

[
𝟏 𝟎
𝟎 𝟏

] 𝑅𝑦 

 
Fig. 2. Outputs of the automotive A/C system via MPC (with two different 
horizons) and Laguerre based MPC 

 
Fig. 3. Inputs of the automotive A/C system via MPC (with two different 

horizons) and Laguerre based MPC 

TABLE II 

 RUNTIME OF SIMULATIONS 

Runtime (ms) Simulation 

𝟓𝟎𝟕𝟎 Case 1 

𝟐𝟏𝟕𝟓𝟖 Case 2 

9942 Case 3 

 

As shown in Fig. 2 and Fig. 3, the comparison of case 1 and 

case 2 illustrates that by the increase of prediction and control 

horizons pressure difference between the condenser and 

evaporator, better tracking of the reference signal is achieved. 

Besides that, overshoot and undershoot of superheat 

temperature is reduced. Also, this change in parameters in case 

2 leads to lower control efforts of compressor and expansion 

valve rather than case 1. However, computational load and 

simulations runtime is increased according to TABLE . The 

simulation results in case 3 are the same as case 2, while the 

runtime is less because of using the Laguerre functions in the 

proposed control structure. Thus Laguerre MPC has shown its 
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superiority by showing better performance while its 

computational load and runtime of simulations are less than 

regular MPC.  
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